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Abstract

Consider a normally distributed response variable, related to an explanatory variable through

the simple linear regression model. Data obtained on the response variable, corresponding to

known values of the explanatory variable (i.e., calibration data), are to be used for testing hy-

potheses concerning unknown values of the explanatory variable. We consider the problem

of testing an unlimited sequence of one sided hypotheses concerning the explanatory variable,

using the corresponding sequence of values of the response variable and the same set of cali-

bration data. This is the situation of multiple use of the calibration data. The tests derived

in this context are characterized by two types of uncertainties: one uncertainty associated with

the sequence of values of the response variable, and a second uncertainty associated with the

calibration data. We derive tests based on a condition that incorporates both of these uncer-

tainties. The solution has practical applications in the decision limit problem. VVe illustrate

our results using an example dealing with the estimation of blood alcohol concentration based

on breath estimates of the alcohol concentration. In the example, the problem is to test if the

unknown blood alcohol concentration of an individual exceeds a threshold that is safe for driving.
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1. Introduction

The problems addressed in this article are in the set up of a linear regression model where

normality is assumed for the dependent variable. Thus let yl, y2, ..., yiv be N independent

observations on a response variable corresponding to the values 3:1, x2, ..., Xg, respectively, of

an explanatory variable, where,

yj ~ N(c + (1.1)

j : 1, 2, ..., N. The xj's are assumed to be non-random quantities. Now let y0 be another

observation corresponding to an unknown value, say 0, of the explanatory variable, where Y0 is

independent of the yj's in (1.1). Thus we have

y0~ + (1.2)

The problem of calibration, or inverse regression, deals with statistical inference concerning 0.

The set of yj's in (1.1), corresponding to the known values xj (j = 1, 2, ..., N), is referred to

as the calibration data. The relationship between the yj's and the corresponding xj's is known

as the calibration curve. We are thus dealing with the situation where the calibration curve is

a straight line.

Most of the available literature on the calibration problem deals with point estimation of O,

or the construction of confidence regions for 0. The purpose of this article is to address some

hypothesis testing problems concerning 0. More specifically, we shall consider the following

testing problems:

(i) /40"0>cvsHl'0<c, (ii)/40'0<cvsHl0>c, (1,3)

where c is a known number, specified in advance. Our investigation of this problem was moti-

vated by the following application.

Estimation of blood alcohol concentration - an example

This example deals with the calibration of breath estimates of blood alcohol concentration,

based on the results of a laboratory test. Here, the yj's are breath estimates of blood alcohol

concentrations and the xj's are the actual concentration of alcohol in the blood, obtained by

a laboratory test. The relevant data, given in Section 3, are based on a study conducted at

Acadiana Criminalstics Laboratory, New Iberia, Louisiana. It turns out that the model (1.1)

provides an adequate fit for the data. We can use the models (1.1) and (1.2) in order to estimate

an unknown blood alcohol concentration 0, after obtaining the corresponding breath estimate

Y0. Such an estimation is preferable to the actual laboratory determination of the blood alcohol

concentration, since it is much easier and faster to obtain the breath estimates. In this context.

we would also like to test whether an unknown blood alcohol concentration 0 is less than or

equal to 0.10 or if it exceeds 0.10, since the legal maximum limit of blood alcohol concentration

while driving is 0.10% in many states in the USA (in some states it is 0.08%). This is precisely

the testing problem (ii) in (1.3).

The hypothesis testing problems in (1.3) will also arise in the context of decision and de-

tection limit problems in bioassays and chemical assays. Suppose we want to determine the

concentration of a chemical in a sample where a direct determination of the concentration may



be difficult or expensive. On the other hand, it may be easier to obtain an indirect measurement,

for example, spectral measurements. First, several samples having known concentrations (the

xj's) are prepared, and the corresponding indirect measurements (the y3's) are obtained. As-

suming that the relationship (1.1) holds, we can use this data for statistical inference concerning

an unknown concentration, say 0, in a sample, after obtaining the corresponding indirect mea-

surement Y0. In this context, the testing problems in (1.3) will arise if we want to verify whether

the unknown concentration is above a threshold, or if it is below. This is precisely the decision

limit problem. We refer to Currie (1988) for a detailed discussion of this problem as it arises

in analytical chemistry. The testing problems (1.3) in the context of bioassays are addressed,

for example, in Dunne (1995). A good discussion of decision and detection limits, along with

environmental applications, can be found in Gibbons (1994, Chapter 5). Other examples and

applications are given in a number of books and articles; see the book by Brown (1993) and the

article by Osborne (1991) for a review.

For the models (1.1) and (1.2), appropriate tests for the hypotheses in (1.3) can be derived

under two different situations. The first is when the calibration data are used only once for

the purpose of testing hypothesis. In the context of the chemical example mentioned above,

this means that the calibration data are collected and used to test hypothesis concerning an

unknown concentration of a single sample. A more realistic scenario is one where the same

set of calibration data are used repeatedly in order to test hypotheses concerning a sequence

of 0-values, one at a time, after observing the corresponding sequence of responses. This is

the situation of multiple use of the calibration data. In other words, we have a sequence of

independent responses y0,:, corresponding to a sequence of 0 values 0,:, following the model

(1.4)

similar to (1.2), i = 1, 2, 3, .... Correspondingly, we have the following sequence of hypotheses

to be tested.

(i) Hoi : Oi >_ c,: vs Hli : Oi < ci, (ii) H0i : 0,: _< ci vs H_ : Oi > c,-, (1.s)

where the ci's are known scalars. For instance, in Example 1, we want to verify if for every

individual tested, the blood alcohol concentration is no more than 0.10, or no more than 0.08,

where the value 0.10 or 0.08 is to be used depending on the legal maximum limit in a state. In

other words, we have hypotheses of the type (ii) in (1.5), where the c,:'s can take two different

values, 0.10 and 0.08. In the decision limit problem, we may be interested in testing if the con-

centration of a chemical or a pollutant in different samples exceeds a particular safety threshold.

Such tests may have to be done a large number of times, as and when a sample is obtained. In

other words, we need to test a sequence of hypotheses of the type (i) or (ii) in (1.5). It is also

clear that in many applications, the c_'s in (1.5) will have a common value.

Tests that we shall derive for testing the sequence of hypotheses in (1.5) will have two types

of uncertainty statements associated with them. One with respect to the sequence of responses

yo_ in (1.4), and a second uncertainty statement with respect to the calibration data, i.e., the

9j's in (1.1). This is formally explained in Section 2. The distinction between single use and

multiple use of the calibration data are also made for the construction of confidence regions. In

fact confidence regions that involve multiple use of the calibration data are derived subject to

two types of uncertainty statements, similar to those mentioned above. We refer to the recent



article by Meeand Eberhardt (1996)for an excellentdiscussionon this. The results in Dunne
(1995)deal with the set up of singleuseof the calibration data. In fact Dunne (1995) provides
solutionsto the testingproblemsin (1.3) in the singleusesituation. Consequently,in this article,
weshall study the problemfor the caseof multiple useof the calibration data.

In the next section,we shall derive the tests. The two uncertainty statements,mentioned
earlier, areexplicitly stated and tests arederivedsubject to these. In our derivations,we have
assumedthat fl > 0 in (1.1). Essentially, this amounts to assuming that the sign of/3 is known.

This is clearly a reasonable assumption since the nature of the dependence of the response vari-

able on the explanatory variable will be known in actual applications. In case/3 < 0, we can

assmne that the slope in (1.1) is -/3, after multiplying yj by -1. In fact, the tests (i.e., decision

limits) derived in Dunne (1995) use the fact that the sign of/3 is known. In Section 3, we apply

our results to the alcohol concentration data, mentioned in example 1. Some concluding remarks

appear in Section 4.

2. The Test

Among the two hypotheses in (1.5), here we shall consider only the sequence (i). Once we derive

tests for testing (i), similar results can be obtained for testing the sequence (ii) in (1.5).

Let & and/3 denote the least squares estimators of (2 and/3 based on the y_'s in (1.1), and

let F 2 denote the unbiased estimator of cr2 based on the residual sum of squares. Then

N N

¢}= _g=l(Xgx -- 2) (YJ -- Y) , &=_--/)2, and _2_ 1 }-_(g_-&-_)zg) 2, (2.1)
Ej=I (zj - 2) 2 N - 2 _=_

where 9 and 2 denote the averages of the yj's and the xj's, respectively. As pointed out in the

introduction, we assume that/3 > 0.

2.1. Motivation of the test statistic

Suppose a, _3 and a2 are known. Then, from (1.2),

(2 Gr2

_ ~ N(0,

Hence, we shall reject H0:0 _> c in favor of Hi' 0 < c if _-_ is small, or equivalently, if _o

is small. In order to arrive at the latter conclusion, we have used the expression for 0 (given

above), along with our assumption ,9 > 0. In practice, usually a, /3 and a2 are unknown, and

we shall replace them by their estimators. Thus let

Our test for H0 0 > c will reject H0 in favor of Hi: 0 < C if T is small. Hence, for testing the

sequence of hypotheses (i) in (1.5), consider the test statistic

Ti = yoi - & -[_ci (2.2)
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We shall reject Hoi: O_ >_ ci in favor of Hi,: Oi < c_ if

Ti < ki, (2.3)

i = 1, 2, 3, ..., where the kz's are to be determined. Note that the test statistic T/ depends

on the response Y0_ and also on the calibration data yy, j = 1, 2, ..., N, through &, l) and _.

Furthermore, (2.3) represents a sequence of rejection regions, for i = 1, 2, 3, ....

2.2. Criterion for the derivation of the test

The derivation of our test amounts to the computation of the ki's in (2.3). We shall now explain

the condition to be satisfied by the k,'s, Since the calibration data will be used repeatedly for

testing a sequence of hypotheses, consider the proportion of H0_'s that are rejected, when they

are true, conditionally given the calibration data, i.e., conditionally given &, f) and _. In other

words, conditionally given &, f) and 6, consider the proportion of times T,: < k_, under Hot:

0_: > c_:, i = 1, 2, 3, .... The k,:'s are to be determined so that with a high probability, the

calibration data will guarantee that this proportion is small (i.e., less than a specified bound),

for all 0i's under the corresponding null hypothesis H0_:. Note that given &, ;) and 5,

T,: _., N [ ct - & + /20,: - _c, 02]• 6 ,g5.

Hence, conditionally given d, ,_) and _, _ < k,: is equivalent to

o_ - d + 20, -/)c_] 6zoi < k,:- ) -, (2.4)
(7 (3

where z0i "- N(0, 1). We shall now give an expression for the proportion of H0i that are rejected

(i.e., proportion of times T,: < k,:), conditionally given 5, ¢) and 6. Let

1, if Ti<k_A_ = 0, otherwise. (2.5)

Conditionally given &, _ and 5: the A_'s are independent Bernoulli random variables with

success probability, say pi, given by

^

k,a - (s - (2.6)

where (I) denotes the standard normal cdf. In order to arrive at (2.6), we have used the fact that

conditionally given &, _) and &, T_ < k_ is equivalent to (2.4). If a sequence of n tests are carried

out, then the proportion of times T,: < ki is i _,_ A,:. By the strong law of large numbers, we• n i=1

get

1 A,: _ p_,
17, i=1 n i=1

as n becomes large. In other words, conditionally given &, f) and 6, the proportion of H0, that

are rejected is 1 Z,_. i=lPi, when n is large. "_Ve want this proportion to be small, with a high
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probability, for all Oi under the corresponding null hypotheses H0,:: 0i > c,:, i = 1, 2, 3, .... That

is, the k,:'s must satisfy

= % (2.7)
i----1

for all 0i under the corresponding null hypotheses H0i' 0_ > c_, i = 1, 2, 3, .... , n, where e is

a specified bound (say, e = 0.05) and ")' is the chosen probability (say, _ = 0.95). Due to our

assumption _ > 0, it follows from the expression for p_ in (2.6) that p_ is maximum under H0_:

O_ > e,: when 0_ = c_. Hence (2.7) holds for all 0_. satisfying 0i > ci if and only if it holds for

O_ = c,:. Using expression for p,: in (2.6), we thus get the following condition to be satisfied by

the k,:'s:

Z - _ = 7. (2.8)
i=1 O" Cr

The condition (2.8) can be interpreted as the "size of the tests" being small, i.e., less than or

equal to c, with probability % We note that (2.8) must actually hold for every n.

Thus the criterion to be used for the derivation of the test_ i.e., the computation of the k,'s,

is the condition (2.8), which must hold for all n > 1. As is clear from the derivation of (2.8),

this condition reflects the fact that the same calibration data are used a large number of times

for testing hypotheses. The fact that the same calibration data are used repeatedly is also the

reason why we don't want to consider the unconditional distribution of the E's in (2.2).

2.3. Computation of the ki's

Note that

- a + (_ - l))c_ = (a + 9x - Y) + (_ -_)(c_ - _).

Define

N

zl = [ _'(x3- 2)2]1/2(,8 - /))/or _ N(0, 1), ze = v/_(9 - c_-_5:)/_r _ N(0, 1),
j=l

7_2 = (N- 2)_ 5 _ X2N_2, and c1,:- [Zy_l(_ j _ :_)2]1/2'
(2.9)

The random variables zl, z2 and u in (2.9) are independently distributed, and _ denotes the

central chisquare distribution with r df. The kz that we compute will be a function of cli given

in (2.9). Hence from now on we shall use the notation k(c,_) instead of k,:. Using the quantities

in (2.9), (2.8) simplifies to

1 n U Z 2 ]
i=1

It appears difficult to obtain k(ct_) explicitly, except in the special case when the c_'s are

all equal. We shall first consider this special case. From the expression for c_, given in (2.9), it

follows that the c_'s are all equal if and only if the c,'s are all equal. As already pointed out,

the c,:'s will be equal in many practical applications; see the discussion following (1.5). When



the ci's are all equal, let c denote the common value of the ci's and let co denote the common

value of the Cl_'S. Hence, from (2.9),

(c-i) (2.11)
CO _ N

-  )211/2

In this special case, (2.10) simplifies to

[ v_--u 2 v/_Z2 ]¢{k(c0)+  1c0+ } :

or, equivalently,

(2.12)

?2 Z 2

Pzl,z2,,,[k(Co) _ + ZlCo + --_ < z(c)] = 7, (2.13)

where z(e) denotes the 100e th percentile of the standard normal distribution. We note that the

condition (2.12), or equivalently, (2.13), is essentially the condition to be satisfied by one sided

tolerance intervals. Indeed, we can arrive at (2.12) by starting with the expression for a one

sided tolerance interval and using the fact that/3 > 0. The solution to the one sided tolerance

interval problem is already known; see Guttman (1970, pp. 87-89. The solution to k(co) is

given by

1 z(e) ], (2.14)
]¢(C0) = (_ -4- c2)1/2tl-_/[t"V - 2; (N + C2)1/2

where tl_-y[r; A] denotes the 100(1 - _/)th percentile of the noncentral t-distribution with df = r

and noncentrality parameter A. Thus in the special case where the c,:'s are all equal to a common

value c, k(co) in (2.14) satisfies (2.12), where Co is given in (2.11).

When the cl,:'s are not all equal, it is not possible to obtain k(Cli) explicMy. In what follows,

we shall explore the following possibility. Let k(cu) satisfy

In other words,

u z2 l ]_zl,z,,u (I){_(Cli) V/_-- _ -+- ZlCli-_- _/_j < _ = "_. (2.15)

1 Z(_)

k(cF) = (i_ +c_i)l/2tl-_[N- 2:' (-N' +c_--_.)1/2J (2.16)

The expression in (2.16) follows since (2.15) is similar to (2.12). Vvb shall numerically investigate

whether k(cl,:) in (2.16) will satisfy (2.10) for various sequences {Cl_}. Note that (2.15) is a toler-

ance interval condition and is quite different from (2.10). In a recent article on the construction

of confidence regions in the calibration problem, Mee and Eberhardt (1996) have indicated that

intervals obtained using a tolerance interval condition may satisfy the requirements of multiple

use confidence regions. Motivated by this, we shall explore whether k(cu) in (2.16) will satisfy

(2.10).

2.4. Numerical results for k(cai) in (2.16)

We have carried out some numerical results to check if k(ca_) in (2.16) will satisfy (2.10). For

this purpose, we need to simulate the left hand side (lhs) of (2.10) using k(cu) given in (2.16),



for various sequences {Cli}. Note that when the qi's are all equal, i.e., when the c_'s are all

equal, such a numerical study is not necessary, since, in this case, k(co) satisfies (2.12), where

co denotes the common value of the cl_'s. Thus the numerical results that we report here are

only for the case when the cli's are unequal. We shall first discuss our choices for the sequence

{cti}. When the calibration data are collected based on a carefully designed experiment, then

the xj's in (1.1) will cover the range of practical interest. Hence it is reasonable to assume that

the 0_'s in (1.4) belong to the range determined by the xj's, i.e.,

min(xj) _< 0, < max(xj), (2.17)

/ = 1, 2, 3, ....Consequently, when (2.17) holds, the cg's in (1.5) should also belong to the range

of the xj's. In other words, when we test the null hypothesis Hoi " O<>_ c_, we are testing if Oi is

greater than or equal to a specified value in the range of the zj's. Hence we shall assume

min(xj) < c_ _< max(xj), (2.18)

i = 1, 2, 3, .... From the definition of cli given in (2.9), (2.18) gives

min(xj)- _ max(xj)- 5:
< Cl_ _< (2.19)

[_N I(X j _ :_)211/2 -- [_N=I(Z j _ :_)21172 '

i = 1, 2, 3, .... In particular, (2.19) implies that

--1 < Cli < 1. (2.20)

The actual bounds for c1_, given in (2.19), could be much narrower than [-1, 1]. In any case, in

order to investigate whether k(cl_) in (2.16) will satisfy (2.10), it appears reasonable to restrict

cl,:'s in the interval [-1, 1]. In our numerical results, we have also considered the wider interval

[-2,2].

For various sequences {c_i}, i = 1, 2, .... , 10,000, we have simulated the following quantity.

1 10,000 ?A Z 2 ]
Pzt,z2,u 10,000 E dxI){ _(Cli) _ q- Z1Cli "_- -_} _ ' (2.21)

i=1

based on 10,000 simulations. The IMSL Fortran function subroutine TNIN is used to compute

k(cl,:). Note that (2.21) is an approximation to the lhs of (2.10). Since (2.10) holds exactly

when the Cl,:'s are all equal, (2.10) is expected to hold approximately when the Cl_'S are nearly

equal. Thus it is necessary to investigate whether (2.10) will hold when tile cl_'s are as unequal

as possible. In any finite sequence {cl,}, with cl, E I-a, a], the c_'s are as unequal as possible,

i.e., the variance among them is a maximum, when half of the cl_'s are equal to -a and the

remaining half are equal to a. In this case, (2.21) reduces to

Pz_,z=,,, _{k(-a) x/_ - 2 qa + + _5{k(a) Nv/7-_-Z__2+ z_a + x/-N'J -< e . (2.22)

The following IMSL subroutines are used in the numerical studies: TNIN to compute k(cli);

RNNOA to generate normal variates; and RNCHI to generate chi-square variates. For N = 20,

e = 0.05 and 0.01, 7 = 0.99, 0.95, 0.90 and 0.85, and a = 2, 1, 0.5 and 0.1, Table 1 gives the
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simulatedvaluesof (2.22),basedon 10,000simulations. When the sequence {Cli}, / _ 1, 2, .... ,

10,000 consists of 10,000 equispaced values in the interval [-2, 2t and [-1, 1], the simulated val-

ues of (2.21) appear in Table 2. If 10,000 cli's are randomly generated according to a standard

normal distribution, the simulated values of (2.21) appear in Table 3.

Table la

The simulated values of (2.22) for N = 20 and e = 0.05, for different values of 7 and a

a 7

0.99 0.95 0.90 0.85

2 0.987 0.936 0.852 0.777

1 0.991 0.950 0.889 0.826

0.5 0.993 0.959 0.916 0.857

0.1 0.990 0.952 0.902 0.849

Table lb

The simulated values of (2.22) for N = 20 and _ = 0.01, for different values of 7 and a

a 7
0.99 0.95 0.90 0.85

2 0.985 0.923 0.848 0.753

1 0.991 0.938 0.865 0.799

0.5 0.991 0.952 0.885 0.824

0.1 0.992 0.949 0.897 0.857

Table 2

The simulated probabilities (2.21) for N = 20 when the sequence {cli} assumes 10,000 equis-

paced values in the interval I-a, a]

I-a, a] ")t

e 0.99 0.95 0.90 0.85

[-2,2] 0.05 0.989 0.954 0.902 0.852

[-1,1] 0.05 0.992 0.951 0.898 0.851

[-2,2] 0.01 0.991 0.954 0.907 0.846

[-1,1] 0.01 0.993 0.947 0.902 0.851

Table 3

The simulated probabilities (2.21) for N = 20 when the sequence {cl,} is generated based on

N(0,1),i = 1 2, .... , 10,000

7
0.99 0.95 0.90 0.85

0.05 0.989 0.950 0.897 0.832

0.01 0.992 0.951 0.899 0.834

Tile simulation results indicate that k(q,.) in (2.16) will satisfy (2.10) reasonably well at least

in situations where the range for c1_, given in (2.19), is a narrow interval. As expected, (2.10) is
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moresatisfactorily met for narrowerintervals. As alreadypointed out, it appearsquite reason-
able to assumethat -1 < c:i < 1. In practice, the range for c:_ is likely to be much narrower,

especially when N is somewhat large. This should be clear from (2.19). In terms of meeting

the condition (2.10), the results are somewhat unsatisfactory in the set up of Table 1, especially

for 7 = 0.85. However, Table 1 represents the 'worst case scenario', since (2.22) corresponds to

the situation where half of the Cl_'S are equal to -a and the remaining half are equal to a (for

a = 2, 1, 0.5, 0.1). In other words, among the sequence of hypotheses being tested, half of the

time we are testing if the parameter is greater than or equal to one extreme of the parameter

space (i.e., -a) and the other half deals with testing if the parameter is greater than or equal

to the other extreme (i.e., a). In actual applications, this appears unrealistic. Nevertheless, the

purpose of reporting the numerical results in Table 1 is to see of (2.10) (i.e, (2.22)) is met in

this extreme situation. For large values of "/the results are quite satisfactory, especially when

a is small. In any case, the numerical results in Table 1-Table 3 provide evidence regarding the

extent to which (2.16) will satisfy (2.10). The overall conclusion is that in practical applications

that call for multiple use of the calibration data for testing the hypotheses in (1.5), k(c:i) given

in (2.16) is quite adequate for meeting the requirement (2.10).

2.5. Testin 9 the hypothesis 1.5 (ii)

Tests for the hypotheses (ii) in (1.5) can be similarly derived. The rejection regions now take

the form T_ > kl(Cli), where T_ is given in (2.2) and c1,: is given in (2.9). When the cli's are all

equal to Co, ka(c0) is given by

1 z(1 - ]k:(c0) = (N + c0 )l/2t [X- 2; c:: '

similar to (2.14). Also, kl(C:i) has an expression similar to that of k(c:_;) in (2.16).

(2.23)

3. An Example

A study was conducted at Acadiana Criminalstics Laboratory, New Iberia, Louisiana, to compare

the breath estimates of blood alcohol concentration with those determined by a laboratory test.

A sample of 15 subjects was used. In Table 4, we present the breath estimates (yj) obtained

using Breathalyzer Model 5000 and the results of the laboratory test (zj). These numbers are

percentages of alcohol concentration in blood. Here we assume that the zj's are accurately

measured, i.e., the measurement errors are small enough to be ignored, so that the zj's can be

assumed to be fixed. A simple linear regression model was fit with y regressed on x based on

all 15 pairs of observations. The fitted model is y = 0.00135 + 0.958x and the value of R 2 is

0.93. The normal probability plot of the residuals is reasonably linear and hence the distribution

of error terms does not depart from a normal distribution. Since in many states in the USA

the legal maximum limit of blood alcohol concentration while driving is 0.1%, we want to test

whether 0 < 0.10 or 0 > 0.10. In other words, here we shall consider the situation where the c_'s

in (1.5) are all equal and equal to 0.10. In this problem, one may want to control the probability

of concluding 0 > 0.10 when in fact 0 _< 0.10. Thus we shall consider the following null and

alternative hypotheses.

No " 0 _< 0.10 vs H1:0 > 0.10. (3.1)
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We shall carry out the test usingE= 0.05and ? = 0.95. From (2.23),

1 z(0.95) ]
kl(CO)= -t-c2)l/2to.95[N- 2; (1 -t-Co2)1/2'

(3.2)

We reject H0 for the ith individual if T_ > kl(C0).

In Table 4, we give the classical estimates obtained by solving from the fitted model for x,

and the values of test statistics T/. The T_'s are computed using the leave-one-out method; for

example to compute the point estimate and the value of the test statistic corresponding to Yl =

0.145 in Table 4, the observation (.145,.160) is not used to fit the model. Thus, N = 14, in (3.2).

Fitting the model by deleting the first observation, we get & = .0007, f) = .97, co = -0.077,

= 3.40, and kl(C0) = 2.67. Furthermore, xl = _ = .14_-.0007 _ .149. This process can be
, /_ .97

carried out by deleting each observation in Table 4.

Table 4

Blood Alcohol Concentrations Data, Estimates and Test Statistics

Yi Xi Xi Ti kl(co)

1 .145 .160 .149 3.40 2.67

2 .156 .170 .160 4.18 2.67

3 .181 .180 .189 6.00 2.67

4 .108 .100 .112 0.85 2.68

5 .180 .170 .189 6.27 2.67

6 .112 .100 .117 1.19 2.68

7 .081 .060 .086 -1.11 2.69

8 .104 .100 .108 0.53 2.68

9 .176 .170 .185 5.78 2.67

10 .048 .056 .047 -3.56 2.69

11 .092 .111 .093 -0.47 2.68

12 .144 .162 .147 3.38 2.67

13 .121 .143 .124 1.73 2.67

14 .065 .079 .065 -2.42 2.68

15 .000 .006 -.006 -7.05 2.71

We observe from Table 4 that the test results are in agreement with those based on labora-

tory test except for the llth and 13th subjects. We also note that for the 15th observation, x_

= 0.006 and £: = -0.006. This discrepancy may be due to the fact that the corresponding yi

= 0 and x,: is very close to zero.

4. Concluding Remarks

In this article, we have investigated hypothesis testing in the calibration problem. In the uni-

variate case, we have succeeded in deriving appropriate tests for testing one sided hypotheses

in the situation of multiple use of the calibration data. The results are illustrated using an

example. The two sided testing problem is not considered in this article, since tests in this
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context can be obtained by inverting the multiple useconfidenceregionsthat are available in
the literature. One-sidedmultiple useconfidenceregionscancertainly be developedand can be
usedfor testing the hypothesesin (1.5). The simultaneoustoleranceintervals in Mee,Eberhardt
and Reeve(1991)can beusedto obtain conservativemultiple useconfidenceregions,and hence
conservativemultiple usetests, for the two sidedtesting problem. The one-sidedsimultaneous
toleranceintervals in Odeh and Mee (1990)can similarly be usedfor obtaining conservative
multiple usetests for the one sided testing problemsin (1.5). However,in the present article,
our goalhasbeento investigatewhether the toleranceinterval condition canbeusedfor carrying
out multiple usehypothesestests. The numericalresults in Section3 show that this is indeed
the case.Note that our results areapplicableonly in the univariate set up and similar results
are currently not available in the multivariate case. The problem of testing hypothesisin the
multivariate calibration problem is currently under investigation.
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